翻訳と辞書
Words near each other
・ Jacobean embroidery
・ Jacobean era
・ Jacobel Glacier
・ Jacobellis
・ Jacobellis v. Ohio
・ Jacobello da Messina
・ Jacobello del Fiore
・ Jacobello di Bonomo
・ Jacobena Angliss
・ Jacobethan
・ Jacobetty Rosa
・ Jacobi
・ Jacobi (crater)
・ Jacobi (surname)
・ Jacobi coordinates
Jacobi eigenvalue algorithm
・ Jacobi elliptic functions
・ Jacobi field
・ Jacobi form
・ Jacobi group
・ Jacobi identity
・ Jacobi integral
・ Jacobi matrix
・ Jacobi Medical Center
・ Jacobi method
・ Jacobi method for complex Hermitian matrices
・ Jacobi operator
・ Jacobi polynomials
・ Jacobi Robinson
・ Jacobi rotation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jacobi eigenvalue algorithm : ウィキペディア英語版
Jacobi eigenvalue algorithm
In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix (a process known as diagonalization). It is named after Carl Gustav Jacob Jacobi, who first proposed the method in 1846, but only became widely used in the 1950s with the advent of computers.
== Description ==
Let ''S'' be a symmetric matrix, and ''G'' = ''G''(''i'',''j'',''θ'') be a Givens rotation matrix. Then:
:S'=G S G^\top \,
is symmetric and similar to ''S''.
Furthermore, ''S′'' has entries:
:\begin
S'_ &= c^2\, S_ - 2\, s c \,S_ + s^2\, S_ \\
S'_ &= s^2 \,S_ + 2 s c\, S_ + c^2 \, S_ \\
S'_ &= S'_ = (c^2 - s^2 ) \, S_ + s c \, (S_ - S_ ) \\
S'_ &= S'_ = c \, S_ - s \, S_ & k \ne i,j \\
S'_ &= S'_ = s \, S_ + c \, S_ & k \ne i,j \\
S'_ &= S_ &k,l \ne i,j
\end
where ''s'' = sin(''θ'') and ''c'' = cos(''θ'').
Since ''G'' is orthogonal, ''S'' and ''S''′ have the same Frobenius norm ||·||F (the square-root sum of squares of all components), however we can choose ''θ'' such that ''S''′''ij'' = 0, in which case ''S''′ has a larger sum of squares on the diagonal:
: S'_ = \cos(2\theta) S_ + \tfrac \sin(2\theta) (S_ - S_)
Set this equal to 0, and rearrange:
: \tan(2\theta) = \frac - S_}
if S_ = S_
: \theta = \frac
In order to optimize this effect, ''S''''ij'' should be the off-diagonal component with the largest absolute value, called the ''pivot''.
The Jacobi eigenvalue method repeatedly performs rotations until the matrix becomes almost diagonal. Then the elements in the diagonal are approximations of the (real) eigenvalues of ''S''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jacobi eigenvalue algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.